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Faculty Course Evaluations
Please provide valuable feedback/vent your frustration

☹

If you’re not sure what 
to write about:
• what additional Python 

prep prior to taking 
the course would have 
been helpful?

• what Python review 
during the course 
would have been 
helpful?

• most/least favorite 
parts of the course?



Quiz Results



Quiz Results
Australia

Pittsburgh

Combined

Mean: 49.3, std dev: 17.8

Mean: 44.1, std dev: 13.6

Mean: 58.6, std dev: 20.5

Max score achieved: 98



Quiz Results
Australia

Pittsburgh

Combined

Mean: 49.3, std dev: 17.8

Mean: 44.1, std dev: 13.6

Mean: 58.6, std dev: 20.5

Max score achieved: 98

1. Don’t panic

2. Quiz regrade requests due Friday 11/30 
(email me and be specific about what you 

think was incorrectly graded)

3. There’s still the final exam next Thursday



Today

• Image analysis with convolutional neural nets

• Overview of some deep learning topics we didn’t get to

• Course wrap-up

• Time series analysis with recurrent neural nets

• Roughly how learning a neural net works

• Recap on some key neural net ideas



Deep Learning

• Inspired by biological neural nets but otherwise not the same 
at all (biological neural nets do not work like deep nets)

• Learns a layered representation

• Tries to get rid of manual feature engineering

“clown fish”

Learned

• Need to design constraints for what features are learned 
to account for structure in data (e.g., images, text, …)



Learning a neural net amounts to 
curve fitting

We’re just estimating a function



Neural Net as Function Approximation

def f(input):

Given input, learn a computer program that computes output

Single-layer neural net example:

this is a function

output = softmax(np.dot(W, input) + b)

return output
the only things that we are learning 
(we fix their dimensions in advance)

We are fixing what the function f looks like in code 
and are only adjusting W and b!!!



Neural Net as Function Approximation

output = softmax(np.dot(W, input) + b)

Given input, learn a computer program that computes output

Single-layer neural net example:

Two-layer neural net example:

layer1_output = relu(np.dot(W1, input) + b1)

output = softmax(np.dot(W2, layer1_output) + b2)

Learning a neural net: learning a simple computer program that maps 
inputs (raw feature vectors) to outputs (predictions)



Architecting Neural Nets
• Increasing number of layers (depth) makes neural net more 

complex
• Can approximate more functions
• More parameters needed

• More training data may be needed

• Designing neural net architectures is a bit of an art
• How to select the number of neurons for intermediate 

layers?
• Very common in practice: modify existing architectures 

that are known to work well (e.g., VGG-16 for computer 
vision/image processing)



Image analysis with 
Convolutional Neural Nets  

(CNNs, also called convnets)



filter

Slide by Phillip Isola

Convolution
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Convolution
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Note: output image is smaller than input image
If you want output size to be same as input, pad 0’s to input
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Convolution
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Convolution

1/9 1/9 1/9
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1/9 1/9 1/9

∗ =

Very commonly used for:
• Blurring an image

• Finding edges

-1 -1 -1

2 2 2

-1 -1 -1

∗ =

(this example finds horizontal edges)
Images from: http://aishack.in/tutorials/image-convolution-examples/



Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

convolve with 
each filter

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

-1 -1 -1

2 2 2

-1 -1 -1

0 -1 0

-1 4 -1

0 -1 0

activation (e.g., ReLU)filters are actually unknown 
and are learned!



Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

conv2d layer 
with ReLu activation 

and three 3x3 kernels

Input image

Output images



Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

conv2d layer 
with ReLu activation 

and three 3x3 kernels

Input image

Stack output 
images into a 
single “output 
feature map”

dimensions: 
height, 
width

dimensions: 
height-2, 
width-2, 

number of kernels 
(3 in this case)



Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

conv2d layer 
with ReLu activation 
and k 3x3 kernels

Input image

Stack output 
images into a 
single “output 
feature map”

dimensions: 
height, 
width

dimensions: 
height-2, 
width-2, 

k



Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

conv2d layer 
with ReLu activation 
and k 3x3xd kernels

Input image

Stack output 
images into a 
single “output 
feature map”

dimensions: 
height, 
width, 

depth d (# channels)

dimensions: 
height-2, 
width-2, 

k
technical detail: there’s 

also a bias vector



Pooling

• Aggregate local information

• Produces a smaller image 
(each resulting pixel captures some “global” information)

• If object in input image shifts a little, output is the same



Max Pooling
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Max Pooling
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Max Pooling
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Output after 
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What numbers were involved in computing this 1?
In this example: 1 pixel in max pooling output 

captures information from 16 input pixels!
Example: applying max pooling again results in a 

single pixel that captures info from entire input image!



Max Pooling and (Slight) Shift Invariance

1 0

0 0
1max pooling 

(2-by-2)

1
0 1

0 0 max pooling 
(2-by-2)

0 0

1 0
1max pooling 

(2-by-2)

0 0

0 1
1max pooling 

(2-by-2)

Small shift 
of object in 

input 
image 

results in 
same 
output



Max Pooling and (Slight) Shift Invariance

1 0

0 0

1 0 0

0 0 0

0 0 0

1max pooling 
(2-by-2)

0max pooling 
(2-by-2)

Big shift in input can still change output

0 0 1

0 0 0

0 0 0



Basic Building Block of CNN’s

Images from: http://aishack.in/tutorials/image-convolution-examples/

conv2d layer 
with ReLu activation 

and k kernels

Input image
max pooling 

(applied to each 
image in stack)

stack of images

output stack of 
smaller images



Handwritten Digit Recognition

length 784 vector 
(784 input neurons)

28x28 image
dense layer with 

10 neurons, 
softmax activation

Training label: 6

Loss/“error” error
Popular loss function for 

classification (> 2 classes): 
categorical cross entropy

Error is 
averaged 

across training 
examples

dense layer 
with 512 

neurons, ReLU 
activation

1
Pr(digit 6)log

Learning this neural net 
means learning parameters 

of both dense layers!



Handwritten Digit Recognition

dense, 
softmax

Training label: 6

Loss/“error” error

28x28 image conv2d, 
ReLU

max 
pooling

2d



Handwritten Digit Recognition

28x28 image dense, 
softmax

Training label: 6

Loss

error

conv2d, 
ReLU

max 
pooling

2d

conv2d, 
ReLU

max 
pooling

2d

extract low-level visual 
features & aggregate

extract higher-level visual 
features & aggregate

non-vision-specific 
classification neural net



CNN Demo



CNN’s

• Learn convolution filters for extracting simple features

• Max pooling summarizes information and produces a smaller 
output and is invariant to small shifts in input objects

• Can then repeat the above two layers to learn features from 
increasingly higher-level representations



Time series analysis with 
Recurrent Neural Networks  

(RNNs)



RNNs
What we’ve seen so far are “feedforward” NNs



RNNs
What we’ve seen so far are “feedforward” NNs

What if we had a video?



RNNs

… …

Feedforward NN’s: 
treat each video frame 

separately

Time 0

Time 1

Time 2



RNNs Feedforward NN’s: 
treat each video frame 

separately

… …

RNN’s: 
feed output at previous 

time step as input to 
RNN layer at current 

time step

In keras, different 
RNN options: 

SimpleRNN, LSTM, 
GRU

Time 0

Time 1

Time 2
Recommendation: 

don’t use SimpleRNN



RNNs Feedforward NN’s: 
treat each video frame 

separately

RNN’s: 
feed output at previous 

time step as input to 
RNN layer at current 

time step

RNN layerTime series

In keras, different 
RNN options: 

SimpleRNN, LSTM, 
GRU

Recommendation: 
don’t use SimpleRNN



Under the Hood

current_state = 0

for input in input_sequence:

output = g(input, current_state)

current_state = output

Different functions g correspond to different RNNs



Example: SimpleRNN

current_state = 0

for input in input_sequence:

output = activation(np.dot(W, input) 
                    + np.dot(U, current_state) 
                    + b)

current_state = output

Parameters: weight matrices W & U, and bias vector b

Activation function could, for instance, be ReLU

Key idea: it’s like a dense layer in a for loop with some memory!

memory stored in current_state variable!



RNNs Feedforward NN’s: 
treat each video frame 

separately

RNN’s: 
feed output at previous 

time step as input to 
RNN layer at current 

time step

like a dense layer 
that has memory

RNN layer

readily chains together with 
other neural net layers

Time series

In keras, different 
RNN options: 

SimpleRNN, LSTM, 
GRU

Recommendation: 
don’t use SimpleRNN
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treat each video frame 
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feed output at previous 
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RNN layer

readily chains together with 
other neural net layers

CN
N

Time series

In keras, different 
RNN options: 
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Recommendation: 
don’t use SimpleRNN



RNNs Feedforward NN’s: 
treat each video frame 

separately

RNN’s: 
feed output at previous 

time step as input to 
RNN layer at current 

time step

like a dense layer 
that has memory

RNN layer

readily chains together with 
other neural net layers

CN
N

Time series

Cl
as

sifi
er

In keras, different 
RNN options: 

SimpleRNN, LSTM, 
GRU

Recommendation: 
don’t use SimpleRNN



RNNs

RNN layer

Text Positive/negative 
sentiment

Example: Given text (e.g., movie review, Tweet), figure out whether 
it has positive or negative sentiment (binary classification)

Common first step for text: 
turn words into vector 

representations that are 
semantically meaningful

In keras, use the 
Embedding layer

Em
be

dd
in

g

Cl
as

sifi
er

Classification with > 2 classes: 
dense layer, softmax activation

Classification with 2 classes: 
dense layer with 1 neuron, 

sigmoid activation



RNNs

Demo



RNNs

• Neatly handles time series in which there is some sort of 
global structure, so memory helps

• If time series doesn’t have global structure, RNN 
performance might not be much better than 1D CNN

• An RNN layer by itself doesn’t take advantage of image/text 
structure!

• For images: combine with convolution layer(s)

• For text: combine with embedding layer



A Little Bit More Detail

Figure 6.13 from Francois Chollet’s book Deep Learning with Python

Simple RNN: has trouble remembering things from long ago…



A Little Bit More Detail

Figure 6.14 from Francois Chollet’s book Deep Learning with Python

Introduce a “carry” state for tracking longer term memory



A Little Bit More Detail

Figure 6.15 from Francois Chollet’s book Deep Learning with Python

LSTM: figure out how to update “carry” state



Learning a Deep Net



Gradient Descent
Suppose the neural network has a single real number parameter w

w

Loss L

tangent line

The skier should move rightward (positive direction)

initial guess of 
good parameter 

setting

The skier wants to get to the lowest point

∆L
∆w

The derivative       at the skier’s position is negative
∆w

∆L
∆w

In general: the skier should move in opposite direction of derivative
In higher dimensions, this is called gradient descent  
(derivative in higher dimensions: gradient)



Gradient Descent
Suppose the neural network has a single real number parameter w
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Gradient Descent
Suppose the neural network has a single real number parameter w
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Gradient Descent
Suppose the neural network has a single real number parameter w

w

Loss L

Victory!

Local minimum Better 
solution

In general: not obvious what error landscape looks like! 
➔ we wouldn’t know there’s a better solution beyond the hill

In practice: local minimum often good enough

Popular optimizers 
(e.g., RMSprop, 

ADAM, AdaGrad, 
AdaDelta) are variants 
of gradient descent



2
1

0
-1

x
-2

Peaks

-3-3

-2
y

-1

0

1

2

L(w)

w2
w1

Gradient Descent
2D example

Slide by Phillip Isola



Remark: In practice, deep nets often 
have > millions of parameters, so very 

high-dimensional gradient descent



Handwritten Digit Recognition

28x28 image

Training label: 6

Loss error

f1 f2

L

�All parameters:

Automatic differentiation is crucial in learning deep nets!

Careful derivative chain rule calculation: back-propagation

A neural net 
is a function 
composition!

xi

yi

f1(xi ) f2(f1(xi ))

L(f2(f1(xi )),yi )

1
n

n∑

i=1

L(f2(f1(xi )),yi )

Overall loss:

Gradient: ∂
1
n

∑n
i=1 L(f2(f1(xi )),yi )

∂θ



Gradient Descent
Training 
example 

1

Neural 
net

loss 1

Training 
example 

2

Neural 
net

loss 2

Training 
example 

3

Neural 
net

loss 3

…
Training 
example 

4

Training 
example 

5

Training 
example 

n

Neural 
net

Neural 
net

Neural 
net

…

loss 4 loss 5 loss n…

average loss

compute gradient

We have to compute lots 
of gradients to help the 
skier know where to go!

Computing gradients 
using all the training data 
seems really expensive!

and move skier



Stochastic Gradient Descent (SGD)
Training 
example 

1

Neural 
net

loss 1

Training 
example 

2

Neural 
net

loss 2

Training 
example 

3

Neural 
net

loss 3

…
Training 
example 

4

Training 
example 

5

Training 
example 

n

Neural 
net

Neural 
net

Neural 
net

…

loss 4 loss 5 loss n…

compute gradient
and move skier

SGD: compute gradient using only 1 training example at a time  
(can think of this gradient as a noisy approximation of the “full” gradient)



Stochastic Gradient Descent (SGD)
Training 
example 

1

Neural 
net

loss 1

Training 
example 

2

Neural 
net

loss 2

Training 
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(can think of this gradient as a noisy approximation of the “full” gradient)
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(can think of this gradient as a noisy approximation of the “full” gradient)
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An epoch refers to 1 full pass 
through all the training data
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Mini-Batch Gradient Descent
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Batch size: how many 
training examples we 

consider at a time 
(in this example: 2)



Best variant of SGD to use? 
Best # of epochs? Best batch size?

Active area of research

Depends on problem, data, hardware, etc

Example: even with a GPU, you can get slow learning (slower 
than CPU!) if you choose # epochs/batch size poorly!!!



There’s a lot more to deep 
learning that we didn’t cover



Visualizing What a Deep Net Learned
• Very straight-forward for CNNs

• Plot filter outputs at different layers

• Plot regions that maximally activate an output neuron

Images: Francois Chollet’s “Deep Learning with Python” Chapter 5



Example: Wolves vs Huskies

Turns out the deep net learned that wolves are 
wolves because of snow…

Source: Ribeiro et al. “Why should I trust you? Explaining the 
predictions of any classifier.” KDD 2016.

➔ visualization is crucial!



Dealing with Small Datasets
Data augmentation: generate perturbed versions of your 

training data to get larger training dataset

Training label: cat
Training image Mirrored

Still a cat!
Rotated & translated

Still a cat!
We just turned 1 training example in 3 training examples

Allowable perturbations depend on data  
(e.g., for handwritten digits, rotating by 180 
degrees would be bad: confuse 6’s and 9’s)



Dealing with Small Datasets
Fine tuning: if there’s an existing pre-trained neural net, you 

could modify it for your problem that has a small dataset

Example: classify between Tesla’s and Toyota’s

You collect photos from the internet of both, but your dataset 
size is small, on the order of 1000 images

Strategy: take existing pre-trained CNN for ImageNet 
classification and change final layer to do classification between 

Tesla’s and Toyota’s rather than classifying into 1000 objects



Dealing with Small Datasets
Fine tuning: if there’s an existing pre-trained neural net, you 

could modify it for your problem that has a small dataset

Example: sentiment analysis RNN demo

Text Positive/negative 
sentiment

Em
be

dd
in

g

Cl
as

sifi
er

We fixed the weights here to come from GloVe 
and disabled training for this layer!

GloVe vectors pre-trained on massive dataset (Wikipedia + Gigaword)
IMDb review dataset is small in comparison



Self-Supervised Learning

Even without labels, we can set up a prediction task!

Example: word embeddings like word2vec, GloVe

Word embeddings will be covered in your next recitation 
(it’s a clever application of predictive data analytics concepts)

Hide part of training data and try to predict what you’ve hid!



Generate Fake Data that Look Real

Noise

Real training 
example

Deep 
net

Fake 
training 
example

Deep net 
classifier Real/fakePick 1

Counterfeiter tries to get better 
at tricking the cop

Cop tries to get better at telling 
which examples are real vs fake

Counterfeiter Cop

Terminology: counterfeiter is the generator, cop is the discriminator

Unsupervised approach: generate data that look like training data
Example: Generative Adversarial Network (GAN)

Other approaches: variational autoencoders, pixelRNNs/pixelCNNs



Generate Fake Data that Look Real

Google DeepMind’s WaveNet makes fake audio that sounds like 
whoever you want using pixelRNNs (Oord et al 2016)

Fake celebrities generated by NVIDIA using GANs 
(Karras et al Oct 27, 2017)



Generate Fake Data that Look Real

Image-to-image translation results from UC Berkeley using GANs 
(Isola et al 2017, Zhu et al 2017)



Generate Fake Art

Source: https://www.npr.org/2018/10/22/659680894/a-i-produced-portrait-will-go-up-for-auction-
at-christie-s

October 2018: estimated to go for $7,000-$10,000
10/25/2018: Sold for $432,500



reward

update agent’s state

Deep Reinforcement Learning

Deep 
net

score for 
different 

(state, action) 
pairs

AI’s 
current 
state

AI agent

Environment

take 
action

The machinery behind AlphaGo and similar systems



The Future of Deep Learning
• Deep learning currently is still very limited in what it can do — 

the layers do simple operations and have to be differentiable

• Still lots of engineering and expert knowledge used to design 
some of the best systems (e.g., AlphaGo)

• Adversarial examples at test time remain a problem

• How do we do lifelong learning?

• How do we get away with using less expert knowledge?

• Basically just doing an elaborate function approximation 
(curve fitting)

• The resulting learned function is comprised of a series of 
basic operations, possibly with a for loop (for RNN’s)



Unstructured Data Analysis

Data

The dead body
Some times you 
have to collect 
more evidence!

Finding Structure InsightsQuestion

When? Where? 
Why? How? 
Perpetrator 
catchable?

Puzzle solving, 
careful analysis

The evidence
This is provided 
by a practitioner Exploratory data 

analysis
Answer original 

question

There isn’t always a follow-up prediction problem to solve



95-865 Some Parting Thoughts
• Remember to visualize steps of your data analysis pipeline

• Very often there are tons of models/design choices to try
• Come up with quantitative metrics that make sense for 

your problem, and use these metrics to evaluate models 
(think about how we chose hyperparameters!)

• Often times you won’t have labels! If you really want labels:
• Manually obtain labels (either you do it or crowdsource)
• Set up self-supervised learning task

• Helpful for both debugging and interpreting outputs

• But don’t blindly rely on metrics without interpreting 
results in the context of your original problem!

• There is a lot we did not cover — keep learning!


